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Abstract: This paper examines the vibrationally induced stabilization of the lowest singlet and triplet vertically 
excited states of a molecule. It is qualitatively shown that one nuclear motion (sometimes two) will lead to a 
particularly favorable (at least initially) stabilizing path. This motion, energetically favored over the other possible 
motions of the excited species, is selected on symmetry, geometric, and energetic grounds and it determines the 
shape of the stabilized excited state as well as its photochemical behavior. 

It is well known that the excited 7nr* triplet state of 
ethylene is 90° twisted around the C-C bond2a 

and that the n i * triplet state of formaldehyde is pyra­
midal.2b In both cases the planar vertically excited 
states have been stabilized by geometrical transforma­
tions, some being very pronounced (twisting or bending 
of the CH2 groups and shortening of the CC and CO 
bonds) and some others being less apparent (increase 
of the CH2 angles, for example). The problem then 
arises of selecting the most "efficient" stabilizing mo­
tions. They will determine (roughly) the shape of the 
stabilized excited species and its photochemical behavior. 
Indeed these relaxation processes are usually much more 
rapid (relaxation time ~ 10 -12 sec) than the collision 
ones (collision time ~ 10-10 sec) and the excited state 
reacts after having reached the absolute (or at least a 
secondary) minimum of its potential energy surface. 
In this paper we put forth the rules which govern the 
selection of the most rapidly stabilizing motions and 
illustrate them with some very simple examples. 

I. Selection Rules for the Stabilizing Vibrations. 
The present investigation is based on the Herzberg-
Teller approach in which the Hamiltonian of the sys­
tem is expanded in powers of normal (or symmetry) 
coordinates about the equilibrium nuclear configuration 
of the ground state. Such a framework has been ex­
tensively used as the starting point in all studies of the 
vibrationally induced perturbations in molecular ground-
state electronic distributions.3 In the case of excited 
state structures this development was implied in the 
empirical rule given by Pearson:4 "the first excited 
state of a molecule containing n electrons should belong 
to the same point group as the ground state of a similar 
molecule having n + 1 or n + 2 electrons. The extra 
one or two electrons are assumed to be in that molec­
ular orbital which becomes occupied in the excited 
state." This rule was in fact given in 1953 by Walsh6 

whose reasoning was based on the behavior of the 
vacating and filling MO's when nuclear positions are 
changed. Even though this rule appears to work quite 
well it is worthwhile to further detail the method in 
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order to gain more insight into the particular vibrations 
involved in the stabilization process. 

Before considering the mathematical formalism two 
points have to be clarified. In the first place6 the 
molecular orbital <pj = \j) for the excited state derived 
from the transition i -*• j is considered here to be a 
virtual orbital from the ground-state calculation. In 
other words jy) is the solution of an Hamiltonian whose 
field terms are due to all iV electrons. 

(h + 2JC - Kc + U1 - K1)IJ) = e,!;) (1) 

(In this equation Jc and K0 are the Coulomb and ex­
change operators for the closed shell of N — 2 elec­
trons.) However the appropriate field for the excited 
state orbital \j) contains only interactions with N — 
1 electrons. The simplest possible way to take this 
into account is to choose \j) to be solution of 

(h + 2JC - Kc + Jt ± K1)Ij) = tj\j) (2) 

where ( + ) and ( —) are for the singlet and triplet state, 
respectively, and where the orbitals in Jc and K,. and 
Jt, and Ki are assumed to have their ground-state forms. 
This is called the frozen core7 or IVO8 approximation 
and corresponds to variationally adjusting the orbital 
|j) in the open-shell Hartree-Fock wave function for the 
excited state. This first comment has in fact nothing to 
do with the basic equations we are going to derive 
but must be borne in mind in some qualitative (for 
example, in the case of the tr -*• T* singlet state of 
ethylene) and in all quantitative applications of our 
results. The second point is that the molecular geo­
metrical transformations are expressed in terms of the 
symmetry coordinates 5 rather than in terms of the 
normal vibrational coordinates Q. The S-type co­
ordinates depend only on the symmetry properties 
of the molecule and (due to the Franck-Condon prin­
ciple) are the same for the ground state and the vertical 
excited states. The 2-type coordinates depend on the 
actual potential energy function (or force field), which 
changes in the excitation process. The nuclear co­
ordinate-depending part of the total hamiltonian X is 
written as 

H = KKK + r„. = E ^ - 2 - EE ^f (3) 
NX' ANN' N t Kx i 

(6) The author is very indebted to one of the referees for this helpful 
comment. 
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The first term (nuclear repulsion term) does not de­
pend on the electronic coordinates. The second one 
(nuclear-electron attraction term) may be written as 
the sum of monoelectronic operators v(i). 

- ^ ? ^ l - £ * ) (4) 

We want to find out how the energy £"N varies in the 
vicinity of the ground-state equilibrium geometry if a 
ground-state molecule (normalized ground-state wave 
function |0), energy E0) is promoted to an excited state 
(normalized wave function \n), energy En). The first 
derivative of the eigenstate energy En with respect to a 
slight change 5 in the /th symmetry coordinate under 
adiabatic or quasistatic conditions {i.e., the slope Pn 

of the curve En(S)) is given by9 

Prior to further developments one has to remember 
that eq 5 is only true if6 

(5n\x - EnIn) + (n\3C - E„\8n) = 0 (6) 

(This may be easily shown by differentiating the eigen­
value equation (3C — E„)\n) = 0.) More precisely 
(6) is true if (a) |«)is the exact solution of the eigenvalue 
equation or (b) \n) is determined variationally. For 
the frozen core or virtual orbital wave functions this 
condition is not satisfied (although it would be for the 
Hartree-Fock wave function for the excited state). 
Therefore eq 5 (and so the following equations) is only 
an approximation even though this approximation is 
probably a reasonable one. 

An expression similar to (5) may be written for the 
first derivative of the ground state energy E0. The 
ground state JO) being stable in its equilibrium geom­
etry, the energy E0 is a minimum with respect to small 
relative displacements of the nuclei 

P0 = 

dS \ ;dS I / 
. c , v - _ . - / 0 (7) 
dS N . d S i / 

Therefore eq 3 may be more symmetrically rewritten as 

\dVse P, = 
bS _(„feo (8) 

The Hamiltonian 3C being invariant under all symmetry 
operations of the molecule, dV?,e/bS and S have the 
same symmetry. If S belongs to the totally symmetric 
irreducible representation of the point group of the 
molecule dEn/dS is generally different from zero. If 
S belongs to a nontotally symmetric representation, the 
two integrals in (8) are identical, equal to zero. For 
example, the SCF ab initio potential energy surfaces 
of the mr* and rv* triplet excited states of acrolein 
show that dEn„*/dS and bErr*/dS vanish when S 
is the nontotally symmetric twist of the CH2 terminal 
group whereas these first derivatives have different 
finite values when S is the totally symmetric relaxation 
of the skeletal bonds.10 Then the important fact is 
that the primary stabilizing motions of the Franck-
Condon vertically excited states are totally symmetric 
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ones, the nontotally symmetric ones being inefficient. 
In relation to this rule it is worthy of note that in photo-
electron spectroscopy only totally symmetrical vibra­
tions are detected in the fine structure of the bands. 
Using now the fact that KNe is the sum of monoelec­
tronic operators v(i), the formulas 5-8 may be expressed 
in terms of the ground-state molecular orbitals.11 The 
closed shell ground-state wave function |0> may be 
written as 

[O) = | 1 1 . . . pp. 

then 

Po = dS 
bVss 

dS + 2Z 

.nn\ 

bv\ 
PlbS\P = 0 (9) 

Similar developments may be carried out over various 
excited states \ri) giving, after being combined with (9), 
the slopes at the origin of the curves En(S) 

\n) = singly excited state i-*• j 

Pi-*, = U 
.,dv 

dS 

Doubly excited state //' -*• jj 

Pu-n = 2 J dSJ 

• \ d v 

1IbS11 

.\bv 

' ! a s ' 
Cation / • ; = 

p. •</|5v/dS|/> 

(10) 

(H) 

(12) 

Anion / = «> -*• j 

F _ , = (j\dv/dS\j) (13) 

Let us return briefly to photoelectron spectroscopy. 
It is well known that among all possible totally sym­
metric vibrations, only a few appear in the fine struc­
ture. For instance, the structure of the Ia2 -*• » ioniza­
tion band of furan shows only three totally symmetrical 
vibrations among eight possibilities.12 Formula 12 
would be a useful (even though approximate) starting 
point in selecting these active vibrations in view of the 
fact that the slope of the curve En(S) strongly depends 
on the molecular orbital which loses the ionized elec­
tron. From the formulas 10-13 some simple relations 
may be obtained between the slopes of the various 
curves En(S) dealing with the same pair of MO's (/ 
occupied and j unoccupied). 

Pu^fj (doubly excited state) = 
2Pj_3 (corresponding singly excited state) (14) 

Pi^a (cation) + P^^j (anion) = 
Pi-,) (corresponding singly excited state) (15) 

The only approximation13 in these relations is that the 
matrix elements of dv/dS between the wave functions 
of the free incoming or leaving electron (in (10) and 

(11) L. Salem, "The Molecular Orbital Theory of Conjugated Sys­
tems," W. A. Benjamin, New York, N. Y„ 1966, p 529. 

(12) P. J. Derrick, L. Asbrink, O. Edgvis, B. O. Jonsson, and 
E. Lindholm, Int. J. Mass Spectrom. Ion Phys., 6, 161 (1971). 

(13) In the case of the anion the virtual orbitals are already frozen 
core approximations to the "extra orbital." Such negative ions tend to 
be quite diffuse and, in the frozen core approximation, they often are not 
even bound.14 Then due to the large difference between \j) (negative 
ion) a large, diffuse orbital and |/) (excited state) a compact, valence 
orbital in many cases, the relation (15) is of only marginal validity/' 

(14) T. H. Dunning, W. J. Hunt, and W. A. Goddard III, Chem. 
Phys. Lett., 4, 147 (1969). 
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(9)) have been neglected due to the entirely different 
spatial localizations of the various parts of these inte­
grals. Moreover these relations are valid only because 
the rth symmetrical displacement 5 is the same for the 
four considered excited states, depending only on the 
molecular geometry which remains unchanged in the 
different vertical excitation processes. That would not 
be the case if -S were replaced by some normal vibra­
tions Q, which changes with each excited state. At 
best these relations might be approximately valid when 
these changes in the normal vibrations in the four con­
sidered configurations are sufficiently small. 

The nontotally symmetric motions which were in­
efficient in the study of the slope Pn will play the major 
role in the study of the curvature of the curve En(S) 
near the origin. This curvature q„ = d2En/bS2 is 
given by9 

<in 
WEn = 

dS2 

d2H\ 
2 £ \{n\bHlbS\k)\>l(Ek - En) (16) 

where the sum over \k) includes all states having the 
same multiplicity as \n). The first term in (16) repre­
sents "the energy change due to the nuclear motion 
within a fixed electronic density"30 and corresponds 
mathematically to the classical force constant, with the 
restriction that it is not defined in a region of minimum 
energy. Following Salem,30 the second term in (16) 
can be defined as the "relaxability" of the molecule 
along the coordinate 5; i.e., it represents the "energy 
change due to the rearrangement of the electronic 
density induced by the nuclear displacement."15 The 
first "classical" term generally does not vanish: b2H/ 
bS2 as well as the square of the excited state wave func­
tion |«) belong to the totally symmetric irreducible 
representation of the molecular point group. In the 
particular case of the ground state |0) this term would 
be the classical force constant k0 

k0 = 
d2K, NN 

dS2 + 2£ d2v 

In the case of the singlet excited state ;' 
written as 

d2FN N 

(17) 

j this term is 

Kn dS2 + 
2A(p$£-p d2v 

+ O 
b2v 
dS2 j) (18) 

and then may be easily expressed as the ground-state 
force constant corrected by two terms depending on the 
particular excitation process defining \n) 

K = k0 + (j 
bS t\J - ( i 

b2v 
dS2 (19) 

Relations of the same type as (15) and (16) are readily 
derived for the k's (with the restriction pointed out in 
footnote 13) 

kft^fj (doubly excited state) = 
2fcj^,(corresponding excited singlet) — ka (20) 

/^.•,,(cation) + /c„-,/anion) = k^j — k0 (21) 
(15) (a) L. Salem, J. Chem. Phys., 38, 1227 (1963); (b) R. F. W. 

Baderand A. D. Brandrauk, ibid., 49, 1666(1968). 

We now focus our attention on the relaxability term. 
The more negative this term, the more efficient will be 
the stabilization process, even though it appears already 
that the ground state |0> is going to give a positive con­
tribution (E0 — En < 0). The problem is then to select 
the pair excited state Ik) — vibration S which gives 
the most important negative contribution and therefore 
the best approximation of the relaxability. At first 
view the important factors to be considered are ener­
getic (related to the energy difference which appears in 
the denominator) and geometric factors (related to the 
matrix elements of the numerator), the latter being 
further divided into symmetry and "spatial localization" 
properties. Before any discussion of these factors it is 
necessary to calculate the matrix elements (n\dH/dS\k), 
limiting ourselves to the case where \n) is the lowest 
excited singlet state i-*-j. 

'"> - & •U\ + •j"I (22) 

(a) If ffc) is a closed shell wave function (ground or 
doubly excited states) the only nonzero matrix elements 
arise when \k) is the ground state JO) or the "corre­
sponding" doubly excited state \k) = ii -*• jj. In both 
cases the numerators are identical. 

°& (23) 

The denominators of these two terms have opposite 
signs (the energy difference \Ei-t^f1 — E„\ being gen­
erally smaller than \En — E0\). The positive "de­
stabilizing" contribution of the ground state is then 
roughly cancelled by the negative contribution of the 
corresponding doubly excited state (roughly because 
the net contribution of these two terms is often nega­
tive). 

(b) If I A;) is a singlet state resulting from the promotion 
of an electron from the kth occupied to the /th un­
occupied MO 

\k) . ii kl\ + . ii Ik (24) 

then a typical term in the matrix element (n\dH/dS\k) 
is for example 

<|...i7Jfcfc!|d#/dS||...i7 kl\) (25) 

Because of the monoelectronic nature of the operator 
bH/bS, three cases occur:11 if i ^ k and j ^ /, the 
matrix element (25) vanishes; if / ^ k and j = /, the 
absolute value of (25) is given by \(i\dv/dS\k)\; if i 
= k and j ^ /, the absolute value is now given by 
\(j\c)v/dS\})\. Then the behavior of the relaxability 
of the lowest singlet excited state i -*• j is governed by 
two factors. The first is that the destabilizing con­
tribution of the ground state is quasicancelled by the 
negative contribution of the corresponding doubly 
excited state. The second is that the sum over the 
singly excited states reduces to the particular ones where 
the electron leaves the rth MO (going up to anyone 
of the ground state empty MO's) or reaches the jth 
MO (starting from anyone of the ground state oc­
cupied MO's). Among all these particular excited 
states the selection of the most stabilizing vibrations is 
based on the magnitude of the matrix element {i\dv/ 
bS\k) or (j\dv/c>S\l) and of the energy difference Ek — 
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En. Obviously the comparison is restricted to vibra­
tional modes involving the same types of internal val­
ency coordinates:30 for example, the rules may indi­
cate the best twisting vibration among all possible 
twisting vibrations but do not afford the comparison 
of the "best" twisting and stretching vibrations. 

(1) The first selection rule is based on symmetry 
grounds. The numerators are nonzero if the direct 
product x of the irreducible representations to which i 
and k (or j and /) belong does contain the irreducible 
representation to which 5 belongs. If, as usual, T 
represents these irreducible representations of the point 
group of the molecule, the above is expressed by 

T(O X T(k) C T(S) 

and/or 

T(J) X IXO C T(S) (26) 

It appears already that the more sophisticated the point 
group of the molecule, the more precise will be the 
selection of the vibrations giving a nonzero contribu­
tion to the relaxability. 

(2) The second selection rule is based on the respec­
tive spatial localizations of the molecular motion S 
and of the transition densities Pik or Pn. Even if a 
matrix element does not vanish under (26) its magnitude 
may be very small if the transition density is localized 
in regions near nuclei which are not involved in the 
motion. Roughly speaking, the second rule is that 
the transition density Pik (or Pn) and the nuclei in­
volved in the vibration S must be localized in the same 
region of the molecule in order to be sufficiently over­
lapping and then give a significant matrix element in the 
numerator of (16). 

(3) Finally, the third (energetic) selection rule takes 
into account the denominator Ek — En and is the analog 
of Bader's condition.3al6 Among all possible excited 
singlet states lying above (in terms of vertical excitation 
energies) the lowest one and obeying the two aforemen­
tioned conditions, the one which determines the sym­
metry of the 5 motion is the lowest. It must be pointed 
out that the energy difference Ek — En plays another 
important role in the third derivative of the energy En 

with respect to S (in what would correspond to the an-
harmonic constant at the equilibrium configuration 
in the case of the ground state). 

VEn / b*H\ \ 

4£ E 
k f£ n m 9^ k 

^ k bs K 
bH\ 
bS m >< m 

bH 
bS 

4£ E 
k ?£ n m ^ n 

(Ek — En)(E7n — Ek) 

bH 

+ 
bH\.\/, \bH\ . . 

bS 
(Ek — En)(Em — En) 

\bH\,\/,\b*H\ 
, ^ \ IdSi / \ I55»| / 
6 1 , ~ p r 

2 £ jnjtf* " En) 

bH 
bS 

(Ek - En)* 
(27) 

The first term in (27) would correspond to the classical 
anharmonicity in the ground state case while the other 
ones result from the rearrangements of the charge 
density. 

Let us suppose for simplicity that the point group 
of the molecule does not contain degenerate irreducible 
representations and consider a nontotally symmetric 
mode S such that the first selection rule (expressed in 
terms of states) holds. 

T(n) X T(k) c T(S) (28) 

Then the only nonvanishing term in (27) is the last one. 
For instance in the second term of (27) the first factor 
is nonzero (28). The second one does not vanish if, 
in addition, we have 

T(k) X T(m) c T(S) (29) 

but the two simultaneous relations 28 and 29 require that 
the wave functions \n) and \m) belong to the same ir­
reducible representation. The third factor then van­
ishes, bH/bS being not totally symmetric. Using the 
selection rule, the sum over \k) in the last term of (27) 
generally reduces to a single term 

b«En 

bS* ' 2fs^ En) 

bH 
IbS 

(Ek - EnY 
(30) 

(16) R. F. W. Bader, MoI. Phys., 3, 137 (1960). 

If S is a stabilizing vibration for the excited state \n) 
(and therefore a destabilizing one for \k)) then Ek — En 

increases with S. The anharmonicity is positive and 
the curvature, initially negative, may vanish and become 
positive, a minimum appearing in the curve En(S). 

To conclude this study of the selection rules, it should 
be emphasized that all these conditions must be satis­
fied for reasonable predictions to be made, as will be 
seen in the following simple examples dealing with 
molecules whose excited state behavior is already 
known. In addition, these rules may be also applied 
in the case where \n) is a triplet state. However, one 
has always to remember that the virtual orbitals are 
not very well adapted to quantitative evaluation of the 
matrix elements. The molecular orbital \j) will be 
different for the singlet and triplet states arising from 
the same orbital excitation ;' -* j . This difference is 
related to the term Kt\j) in (2). If the orbitals \i) and 
\j) are concentrated in the same region of space then 
this term is expected to be large and the singlet and 
triplet orbitals should be considerably different. This 
problem has been studied by various authors for ethyl­
ene and formaldehyde.1*"18 They conclude that 
there is a marked difference between singlet and triplet 
v* orbitals derived from ir -* r* excitations but only 
slight differences in those obtained from a -*• ir*, n 
-*• TT*, and V-* ir* (triplet) excitations. 

II. Application of the Selection Rules in the Case 
of Single Conjugated Molecules. The first example 
(formaldehyde) has been chosen to clarify the use of the 
first and third selection rules. Consider for instance 
the nx* vertically singlet excited state (1A2) (point 
group C2„). The sequence of the singlet excited states 

(17) R. Buenker, S. Peyerimhoff, and W. Kammer , J. Chem. Phys., 
55, 814(1971). 

(18) J. L. Whitten and M. Hackmeyer, ibid., 51 , 5584 (1969). 
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Figure 1. B2 type normal vibration of formaldehyde. 

a4a g molecular 
orbital ,> vibration 

(trans flapping) 
H* l02 g molecular 

orbital 

Figure 2. Representation of the matrix element (4ae\bv/dS\ir*) 
when S is the B2g vibration of ethylene. 

is experimentally known to be2' 

n): 
k): 

/l(2b2) >• 7T*(2b,) 
,T(Sa1) — > ^(Ib1) 
TT(Ib1) >• 7T*(2b,) 
/i(2b2) — > <r*(6a,) 

1A2 
1B1 
1A1 
1B2 

4.3 eV 
7.1 eV 
8.OeV 
10 eV 

The symmetries of the associated motions are given 
(using (26)) by 

.xcited 
state 
1B1 
1A1 
1B2 

Direct product 
5a, X 2b2 — > - B2 
2b2 X Ib1 — > A2 
6aj X 2bj — > • Bi 

Energy dif 
Ek — En 
2.8 eV 
3.7 eV 
5.7 eV 

First of all the A2-type motion corresponds to a rota­
tion of the whole molecule and does not stabilize the 
excited species. The Bi motion corresponds to in-plane 
displacements of the nuclei (see for example the Bi 
normal vibration of an XYZ2 molecule20). There is 
then only a small coupling between these in-plane 
vibrations and the in-plane (<x) -*• out-of-plane (T) 
electronic transition density. The small magnitude 
of the numerator's matrix element and the relatively 
important denominator's energy difference both provide 
a poorly efficient relaxability. The stabilization process 
appears then to follow a B2-type vibration. This vi­
bration20 is represented below (motions perpendicular 
to the plane of the paper being as usual indicated by -f-
or — signs in the circle representing the particular 
nuclei, Figure 1). Such a motion is well adapted to 
couple the a -*• it transition density and moreover 
corresponds to the smallest energetic gap Ek — En. 
Due to this vibration the singlet (and also the triplet) 
nit* of formaldehyde acquires a pyramidal structure, the 
out-of-plane angle being 31 ° (35° for the triplet state). 

The second example (ethylene molecule, D2n point 
group) will mainly be used to further improve the 
"spatial localization" selection rule. Let us first 
consider the lowest triplet state 3|«) = 3B3u. Its calcu­
lated transition energy (4.25 eV)17 is in good agreement 
with experiment (4.6 eV)21 It is predominantly a 
valence excited state. As shown in Table I three non-
totally symmetric motions may stabilize this vertically 

(19) H. Ley and B. Arends, Z. Phvs. Chem. 12, 132 (1931); W. C. 
Pryce, / . Chem. Phys., 3, 156 (1935); J. C. D. Brand, J. Chem. Soc, 858 
(1956). 

(20) G. Herzberg, "Infrared and Raman Spectras," Van Nostrand, 
New York, N. Y., 1945, p 65. 

(21) C. Reid, / . Chem. Phys., 18, 1299 (1950); D. F. Evans, J. Chem. 
Soc, 1735 (1960). 

(X 
^Ib1J molecular 

orbital 
Au vibration 

(twist) 
o lb jg molecular 

orbital 

Figure 3. Representation of the matrix element (lbu | dv/dS] Ib16) 
when S is the A„ vibration of ethylene. 

Table I. Nature of the Vibrations which Couple the 
3B311(Ib1U — Ib28) State of Ethylene (3l«> State) with the 
Neighboring Triplet Excited States (3\k))a 

3\k) states 

B3u(lb lu — 2b28) 
B38(Ib18 -» Ib28) 
B2g(lb lu -» 4b3u) 
Au(lb lu — 2bi„) 
Biu(lbiu -* 5aB) 
Ag(Ib1U -*• 2bm) 
B28(I b,u — 3b3u) 
B2g(lb lu - 2b2u) 
BmObiu -+ 4aB) 

n 

3 
2 
3 
3 
3 
3 
3 
3 
3 

Eh — En, eV 

5.28 
5.27 
5.04 
4.18 
4.12 
3.48 
3.24 
3.22 
2.54 

T(S) 

A* 
Au 
Biu 
B38 

B2, 
B3u 

B lu 

Au 
B28 

Nature of the 
vibration S 

V\ 

vt twisting 
V7 cis flapping 

Vi trans flapping 
V11 or vn 

V1 cis flapping 
Vi twisting 
vt, trans flapping 

° The number n is the appropriate principal quantum number of 
the upper orbital for the 3A) excited state. (In the case of the 3B31, 
state it = 2.) The values of the various vertical transition energies 
(Ek, En) are those calculated by Buenker, et a I." The 5 vibrations 
are numbered according to Herzberg, ref 20, p 107. 

excited state: (a) a B2e motion (trans flapping 8̂ vi­
bration) which couples the 3B3u state with two 3B3u 

triplets; (b) a B!u motion (cis flapping V1 vibration) 
which couples the 3B3u state with two SB2K states; and 
finally (c) an Au twisting motion e4 due to the coupling 
between 3B311 and 3B;iK states. In addition, Table I 
gives the principal quantum number n of the upper 
molecular orbital of each excited states. It is seen 
that, in terms of matrix elements between molecular 
orbitah, five of the six couplings involve the overlap 
of the lb2g (n = 2) compact, valence MO of the 3B311 

state with the large and diffuse molecular orbitals (n 
= 3) of the 3Ik) states. Such matrix elements are 
expected to be small and so are the corresponding cis or 
trans flapping deformations. (In addition, it is not 
possible, without quantitative calculations, to decide 
which one of the two flapping motions is here pre­
dominant.) As an example the matrix element cor­
responding to the coupling between 3B311 and 3Bi11 

states (via a B2K vibration) is schematically represented 
by the Figure 2. This trans flapping motion couples 
remarkably well with the two MO's. For instance on 
the left half-part of the molecule it decreases the CH 
antibonding interactions in 4aK and increases the bond­
ing ones between the hydrogen Is atomic orbitals, the 
positive lobe of the carbon sp2 orbital (<r 4aK MO) and 
the positive lobe of the 2pz atomic orbital (it* lb2(! MO). 
On the other hand the coupling between the 3B311 and 
the second 3B38(IbI6 -*• lb2g) states involves a matrix 
element between two valence orbitals (lbiu and lbiK, 
respectively). Such a matrix element (schematically 
represented by Figure 3) is expected to be bigger than 
the preceding ones and, even though the energy de­
nominator is also bigger (5.27 eV), the twist will be the 
most efficiently stabilizing motion. (Moreover, addi­
tional Au coupling is provided by the lowest 3B311(I bm 
-*• 2b2u) state.) There is therefore little difficulty in 
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a B, disrotatory vibration b A u disrotatory vibration 

of cis butadiene of trans butadiene 

Figure 4. Disrotatory vibrations of cis- and fra/u-butadiene. 

accepting Mulliken's hypothesis that the equilibrium 
structure of the molecule in this 3B3u(T) state has an 
antiplanar arrangement of hydrogen atoms.22 Walsh 
has suggested that a pyramidal arrangement of the 
bonds around each carbon atom would correspond to 
the excited orbital's acquiring some s character which 
would stabilize the orbital. (He also suggested that 
each carbon atom would be slightly out of the mirror 
plane bisecting the HCH angle of the other CH2 group.)5 

Theoretical calculations23 indicate that in the first 
excited triplet state the conformation of the ethylene 
involves both a twisting and a flapping motion of the 
CH2 groups. Rules summarizing the excited states 
which are important for enhancing various nuclear 
motions in the ground state already have been 
formulated by Salem.24 In the present case the 
only excited states \k) interacting with a given ex­
cited state |«) = i -*• j (interacting in the sense that the 
matrix element (n\bH/dS\k) is nonzero) are of the two 
types / —»• / or k -*• j . The simple ethylene case enables 
us to predict that if the pair (jl) is of a (CH antibonding, 
CH2 bonding)-ir*-type, the associated motion is a 
flapping, and that if the pair (ik) is of <r(CH bonding, 
CH2 antibonding)- Tr-type, the associated motion is a 
twist of the CH2 terminal group. 

Let us now consider the corresponding 1B3U singlet 
state which is the lowest IT -*• IT* state but not the 
lowest singlet state. Its vertical excitation energy is 
calculated to be 8.32 eV and the eventual correlation 
of this state with the V state of ethylene (at 7.6 eV) is 
carefully discussed by Buenker, et a/.17 For our own 
purpose it has simply to be recalled that this state has a 
diffuse character but that its charge density contours 
emphasize that it should not be associated with a pure 
Rydberg state. Both lower and higher energy singlet 
states have to be taken into account in our study and, 
as shown in Table II, the following qualitative conclu­
sions may be drawn, (a) The cis flapping motion 
determines two couplings; the first one, between 1B3U 
and 1B2J, (lbiu -»• 3b3u), destabilizes the vertical excited 
1B3U state (Ek — En < 0); the second one, between 1B3U 
and 1B38 (lbiu -*• 4b3u), stabilizes the vertical 1B311 state 
(Ek — En > 0). The two contributions roughly cancel. 
They certainly both correspond to small matrix elements 
((lb2B|cVdS|3b3u) and (Ib2J1Sv/dS\4b3u), respectively) 
involving diffuse MO's (n = 3), and the denominators 
have similar magnitudes but opposite signs, (b) The 
stabilizing trans flapping motion which corresponds to 
a denominator of 0.12 eV appears to be more efficient 

(22) R. S. Mulliken, Phys. Ret:, 41, 751 (1932); 43, 297 (1933). 
(23) L. Burnelle and C. Litt, MoI. Phrs., 9, 433 (1965). 
(24) L. Salem, Chem. Brit., 5, 449 (1969). 
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Figure 5. Disrotatory closure of /ra«5-butadiene giving bicyclo-
[1.1.0]butane(2). 

Table II. Nature of the Vibrations which Couple the 1B311 State 
of Ethylene (1IH) State) with the Neighboring Singlet 
Excited States (1IA))" 

Nature of the 
1IA:) states 

B311(Ib111 -* 2b2e) 
B3c(lb lB — Ib2,) 
B2B(lbiu -* 4b 3u) 
Au(Ibm -»• 2bi„) 
Biudbiu -* 5a„) 
A„(lbiu ->- 2biu) 
B2nO bi„ -*• 3b,u) 
B3 B0b l u - 2b2„) 
BiuObiu — 4a„) 

;; 

2 
2 
3 
3 
3 
3 
3 
3 
3 

Ek - En. eV 

+ 2.41 
+ 1.56 
+ 1.0 
+0.12 
+0.12 
-0 .29 
-0 .77 
-0 .83 
-1 .38 

T(S) 

A, 
A11 

Biu 
B3c 
B2, 
B3u 

Biu 
A11 

B2B 

vibration 5 

V\ 

Vi twisting 
v-i cis flapping 

vg, trans flapping 
Vn Or Vi2 

V-, cis flapping 
Vi twisting 
C8 trans flapping 

" The number n is the appropriate principal quantum number of 
the upper orbital for the : k) excited state. (In the case of the 
1B3U state it = 3.) The values of the various vertical transition 
energies (Ei1, En) art those calculated by Buenker, et a/.17 The 5 
vibrations are numbered according to Herzberg, ref 20, p 107. 

than the destabilizing one (energy denominator —1.38 
eV). Therefore such a deformation might be expected 
to be present in the relaxed configuration, (c) The 
predominant Au twisting motion is also stabilizing. 
The Au vibration couples the 1B3U state, a predominantly 
(but not true) Rydberg state (n = 3) with the first 
valence singlet state 1B3K (« = 2). During the twist 
the 1B3U state is stabilized and acquires more and more 
valence character by vibronic mixing with the 1B^ 
state. Thus the diffuse singlet for the planar geometry 
correlates with a singlet possessing a great amount of 
valence character in antiplanar geometry (though cer­
tainly much less than the corresponding triplet in the 
antiplanar geometry).17 

The aforementioned selection rules being mainly 
based on the symmetry and on the spatial localization 
of molecular orbitals, it is not surprising that they are 
strongly related to the Woodward-Hoffmann rules. The 
final example dealing with the W —*• IT* excited states 
of cis- and /ra«s-butadiene illustrates this fact. Theo­
retical calculations25 have shown that the lowest singlet 
excited state of cis- and /ra^s-butadiene is not the 7r. -*• 
Ti* state (respectively 1B2 and 1Bn) but rather the mixed 
(7r2 -»• 7T4* + T i - * T3*) state (respecti vely 1A1 and 
1Ag). The excited singlet states are given in Chart I. 

(25) R. J. Buenker and J. L. Whitten, J. Chem. Phys., 49, 5381 (1968). 

Devaquet / Vibr at tonally Induced Stabilization 



5632 

Chart I 

c/'i-Butadiene 
k) = 1B1 -154.390 au 

1B2 -154.421 au 
i„> = IA1 -154.489 au 
I0) = IA1 -154.766 au 

rra».s-Butadiene 
'k) = 1Au -154.395 au 

1B11 -154.397 au 
',,) = 1A8 -154.569 au 
;o> = 1A1. -154.722 au 

In order to relate the selection rules to the conrotatory 
and disrotatory Woodward-Hoffmann displacements 
we focus our attention on the possible twist of the CH2 

terminal groups. 
In the case of c/s-butadiene the symmetries of the 

vibrations associated with the 1Bi and 1B2 excited states 
are respectively Bx and B2. The Bi vibration does not 
provide any twist of the CH2 groups whereas the B2 

one displays a disrotatory behavior (Figure 4a). This 
photochemical disrotatory motion is in accord with the 
Woodward-Hoffmann rules and produces cyclobutene. 

In the ?ra«5-butadiene case the vibrational symmetries 
associated with the 1B11 and 1A1, excited states are re­
spectively Bu and Au . Here again Bu does not involve 
any twisting motion whereas the A11 vibration is a dis­
rotatory one (including also the in-phase out-of-plane 
motion of the central hydrogen atoms (Figure 4b). 
These two motions distort the highest occupied M O 
in such a way that the increased overlaps (arrows in 
Figure 5) lead to the formation of bicyclo[1.1.0]butane 
(2). 

This reaction may be a slow concerted one or a two-
step reaction involving the intermediate I.26 
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Abstract: Pattern recognition is a newly developing branch of artificial intelligence that shows a great deal of 
promise in providing a generalized approach to solutions of a large class of data analysis problems in experimental 
chemistry. A general statement of the problem is: can an obscure property of a collection of objects (elements, 
compounds, mixtures, etc.) be detected and/or predicted using indirect measurements made on the objects? One 
particular method within the realm of pattern recognition, the learning machine, has been successfully applied to 
spectroscopic data for direct detection of molecular structural units. This paper introduces pattern recognition 
in a much broader scope. Using a synthetic data base and a data base of chemical interest, the major approaches 
within pattern recognition are examined. One method representing each approach is applied to the two funda­
mentally different data sets, first to compare the results, but also to illustrate the far-reaching problem solving capa­
bility. 

A large amount of experimental science deals with 
predicting properties of objects which are not 

directly measurable. In chemistry, the objects range 
from pure elements or compounds to complicated 
industrial and natural products. The properties can 
be fundamental, such as atomic or molecular structure, 
or less fundamental, such as reactivity, permeability, 
absorptivity, etc. All too often, these properties are 
not directly measurable and must be found using 
experimental measurements which are known to be 
related, in some way, to the sought-for property. In 
some cases a theoretical relationship between measure­
ments and the property is used. A few simple but 
common examples serve to clarify this point. Emission 
spectrometry does not provide a direct measure of 
atomic composition (few methods do) but rather a 
measure of the wavelengths of light emitted when a 
sample is " p u m p e d " with energy. The mathematics 
of atomic theory provide the connection between com­
binations of various wavelengths and the structure of 

(1) Work performed under the auspices of the U. S. Atomic Energy 
Commission. 

atoms. Along the same lines, nmr spectrometry does 
not provide a direct measure of molecular structure 
but rather a measure of how isotopes are perturbed 
under various experimental conditions. Group theory 
provides the connection between nmr parameters and 
molecular structure. 

To proceed, let us consider a less fundamental 
property of chemical compounds, reactivity. We will 
assume that one is faced with the problem of predicting 
the reactivity within a very large number of samples 
(compounds or mixtures of compounds) . There are 
three methods of determining whether or not two 
compounds will react in a prescribed manner. The 
first and most obvious is the direct determination 
method consisting of adding one to the other under the 
desired conditions of temperature and pressure. The 
next method, herein called the theoretical method, is to 
study bonding possibilities of the molecules taking into 
consideration such things as orbital symmetry, steric 
hindrance, etc. Although these two methods are the 
most desirable, they may not be feasible. Direct 
methods may be prohibitively expensive, time con-
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